Introduction

This is the second of a 3-course sequence focused on mathematics teaching and learning. The 3-course sequence is designed to create an opportunity for sustained learning and professional growth.

This quarter we will examine two crucial and closely connected aspects of classroom instruction: planning lessons and assessing student learning. We will discuss approaches to the “backward design” of curricula in which educators begin their planning with a vision of the understandings they want their students to achieve and of the dimensions of performance that would demonstrate those understandings. We will explore and map important understandings in secondary mathematics and the misconceptions often held by students.

We will also consider different forms of assessment – formative and summative - noting the importance of designing assessments that match our instructional goals: assessing understanding in multiple ways, offering rationale for each design and goal, and integrating assessment and instruction.

We will also examine dimensions of mathematics instruction teachers must consider as they prepare lessons: informal assessment, participation structures, selection and implementation of tasks, and the role of the teacher in the lesson. There will be a joint focus throughout the course on research and practice. Journals and other assignments will encourage you to learn from both course readings and your classroom placements through informed reflection.

We will also explore problem solving as a teaching approach. Before you can develop in students the skills to solve mathematical problems, you need to know yourself as a problem solver, and you need to know particular processes involved in problem solving. Throughout the quarter, we will inspect and work on a set of mathematical tasks that will help us accomplish both of these goals.

We will engage in tasks in class, using a variety of formats: individual, pairs, groups and whole class. We will delve deep enough into the tasks to illustrate an important aspect of problem-solving, but you may need to continue pondering and working on the extensions outside of class. In addition to reflecting on your own mathematical experience with each task, we will systematically consider the mathematics likely to surface, the background skills needed to access the tasks, and the range of approaches students are likely to take.
Course Requirements

We expect you to come to class having completed the reading and assignments due for that
day and prepared to participate in class discussions and activities. Attendance to all sessions is
mandatory. Please give us ample notice if you must be late or need to miss a class.

Assessments and Grading

Your assignments for this quarter are (Please refer to Canvas for detailed descriptions):

- Due Sunday October 9th by 10:00 PM Norms Assignment
- Due Sunday October 30th by 10:00 PM Assessment for Learning Part I
- Due Sunday October 11th by 10:00 PM Assessment for Learning Part II

Your grade will be based primarily on the quality of the assignments mentioned above. We will
also take into account your attendance, and your active contributions to class discussions. As
with all your work in C&I this year, you may revise and resubmit any written assignment for a
higher grade.

All assignments should be digitally submitted to Canvas unless otherwise specified by the
instructors. All assignments should be uploaded to the assignment in Canvas no later than 10
pm on the due date. If you have extenuating circumstances and would like to request an
extension, please do so before the deadline. All feedback will be provided digitally within your
submitted documents. Please turn in all assignments as Microsoft Word documents. It is fine to
embed photographs in the word document, and we really appreciated having one continuous
file for each assignment. It is difficult to comment on pdf files, and we are certain we can open
your assignments if they are saved in Word. Please save all files using the following naming
convention: Lastname_Assignment.docx. For example: Brown_Journal Reflection.docx

University Policies

All Stanford students are expected to follow the Stanford Honor Code and Fundamental
Standard, as noted in the STEP Handbook and Stanford Student Guide.
http://www.stanford.edu/dept/vpsa/judicialaffairs/about/welcome.htm

Students with Disabilities

Students who may need academic accommodations based on the impact of a disability must
initiate the request with the Office of Accessible Education (OAE). Professional staff will
evaluate the request with required documentation, recommend reasonable accommodations,
and prepare an Accommodation Letter for faculty dated in the current quarter in which the
request is being made. Students should contact the OAE as soon as possible since timely notice
is needed to coordinate accommodations. The OAE is located at 563 Salvatierra Walk; phone:
(650) 723-1066; web site http://studentaffairs.stanford.edu/oae
<table>
<thead>
<tr>
<th>Date</th>
<th>Session</th>
<th>Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/29</td>
<td>Session 7: Refining and Revising Mathematical Tasks</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Session Title</td>
<td>References</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
 LaMar, T., & Boaler, J. (2021). The Importance and Emergence of K-12 Data Science. Phi Delta Kappan, 103(1), 49-53. |