EDUC267F:
Development of Scientific Reasoning and Knowledge II
Stanford University, Winter 2021
Thursdays, Jan 14-Mar 18, 3:30-5:15pm

Instructors
Polly Diffenbaugh
Office: CERAS 313, 650-223-9421
pdiffenbaugh@stanford.edu
Office Hours: By appointment

Danny Pimentel
Office: CERAS 225, 617-605-5227
dpimente@stanford.edu
Office Hours: By appointment

Course Description:
In the Development of Scientific Reasoning and Knowledge II we will explore and investigate aspects of science in the elementary classroom. Our overarching goal is to develop your competence and confidence to teach science. We will be emphasizing: 1. The use of phenomena as a method of exploring the world around us and 2. Interpreting the practices of the NGSS. The course will help you integrate science into your teaching. We hope that you will see science as the wonderful, all encompassing, fascinating subject that it is and can be. Like us, our children are so interested in the world around them and they are fantastic question askers. We want to explore how we can facilitate this questioning and investigating of the world and to see what it looks like in our classrooms.

As we explore objects and phenomena, we will listen to ourselves describe, classify, explain, and predict in order to hear what scientific understanding sounds like. We will argue, use scientific models and write about our investigations as a model for what we can do with students. Our discussions will focus on how teaching can foster such understandings in children. We will also discuss how all children can wonder and think about the world we live in and the phenomena they experience every day. Unfortunately, there are many students who are marginalized in science despite their interest and creativity. Some of these learners are not given access to robust and rich science curriculum. Throughout this course, we will be focusing our lens on aspects of equity and how all students can engage in and access scientific content and practices.

In this class we will delve into the Next Generation Science Standards and their strong connections with the Common Core Standards in Math and Language Arts. The emphasis will be on thinking about how we can support literacy in science education. Additionally, we will focus on how you as teachers can build up your own content knowledge.

Winter Quarter Goals
1. Analysis of existing curriculum to understand the structure and content of popular science curriculum materials that you may be using in your classrooms through the framework and structure of the NGSS.
2. Practice skills, strategies, and routines for teaching science (productive talk moves, literacy strategies, see it-do it-write it, applying practices and CCCs, using models, asking questions, navigation routine) and include them in your plans.
3. Understand student’s ideas about science topics (pre-assessments) to inform teaching and instruction.
4. Develop a phenomenon-based lesson plan using a known curriculum and the needs of students, including special needs and linguistic / cultural resources.
5. Plan science instruction that promotes social justice by considering the roles of power, agency, and authority in the science classroom.
Course Requirements
Students are required to attend classes regularly and to complete all readings prior to each class. The course will be highly collaborative and active participation is essential. Attendance is extremely important and is required at all class meetings. Students are expected to arrive on time, refrain from leaving prior to the end of the class, and participate actively in class activities and discussions. Classes will include mini-lectures, small group activities, presentations, and discussions of key themes from the assigned readings. We expect that people will remain off of their phones and social media during class and stay focused and engaged with your classmates.

Grading Policy:
Our intention is that all teacher candidates will become more comfortable teaching science and in their own science understandings. Assignments which do not meet criteria will be returned for revision. Please communicate questions or concerns with Polly and Danny directly. We encourage you to ask for extensions in advance as needed.

Course Assignments:

Assignment 1: Curriculum Analysis and Presentation - Due Week 4
The goal of this assignment is for you to explore some of the main curriculums available in schools right now and to share them with your classmates. You will choose a curriculum you are interested in to analyze independently or with a partner and then create a slide for a shared presentation and jigsaw discussion we will do during week 4.

Assignment 2: Lesson Plan based on Curriculum - Due Week 10
Using any curriculum studied in our class or that is used in your school, take an existing lesson from that curriculum and modify it into a lesson plan that takes your students and their needs into account. Link your lesson plan to the NGSS and if possible, consider how you might also make it interdisciplinary. See provided template, or use your own format.

Assignment 3: Reading Discussion Facilitation (variable dates Weeks 3-9)
This assignment provides students with practice in engaging others in productive discussions based on the class readings for the week. Students will work in small groups to facilitate the discussion of one of the assigned readings. Please make sure to meet with Danny at least a week in advance of your presentation. Students should pose relevant guiding questions, facilitate group discussion, and make explicit connections between their selected reading, relevant course topics, and placements. Students will form groups and select a week on the first day of class. More detailed guidelines are available on Canvas.

Honor Code:
Students are expected to adhere to Stanford’s honor code. According to the Office of Judicial Affairs (OJA) website, “For purposes of the Stanford University Honor Code, plagiarism is defined as the use, without giving reasonable and appropriate credit to or acknowledging the author or source, of another person’s original work, whether such work is made up of code, formulas, ideas, language, research, strategies, writing or other form(s).” For further information, please consult the OJA website: http://www.stanford.edu/dept/vpsa/judicialaffairs/students/plagiarism.sources.html

Students with Documented Disabilities:
Students who may need an academic accommodation based on the impact of a disability must initiate the request with the Office of Accessible Education (OAE). Professional staff will evaluate the request with required documentation, recommend reasonable accommodations, and prepare an Accommodation Letter for faculty dated in the current quarter in which the request is made. Students should contact the OAE as soon
as possible since timely notice is needed to coordinate accommodations. The OAE is located at 563 Salvatierra Walk (phone: 723-1066, URL: http://studentaffairs.stanford.edu/oae).

<table>
<thead>
<tr>
<th>Detailed Session Information (Also linked on our Canvas site)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Session 1: How do I think and behave like a scientist? - Thursday, January 14</td>
</tr>
<tr>
<td>Essential questions/Goals for the day: What is a scientist? How can we make scientific practices more authentic and inclusive?</td>
</tr>
<tr>
<td>Equity Focus: Access to science matters. How does prior knowledge influence the way students react to new content?</td>
</tr>
<tr>
<td>Science Focus: Using science practices (strategies)</td>
</tr>
<tr>
<td>Tasks/In-Class Activities:</td>
</tr>
<tr>
<td>● Unpacking the Scientific Practices (differences from the Scientific Method)</td>
</tr>
<tr>
<td>● Introduction to the frameworks we will use in class</td>
</tr>
<tr>
<td>● Using nature journals as a practice of observation</td>
</tr>
<tr>
<td>● Review syllabus</td>
</tr>
<tr>
<td>● Sign up for reading discussion facilitation</td>
</tr>
<tr>
<td>Required Readings:</td>
</tr>
<tr>
<td>Additional Resources:</td>
</tr>
<tr>
<td>● California Science Standards. https://www.cde.ca.gov/pd/ca/sc/ngssstandards.asp</td>
</tr>
<tr>
<td>● John Muir Laws Nature Journaling Curriculum, available as a free download. Please download and check out this wonderful resource.</td>
</tr>
</tbody>
</table>

| **Session 2: Valuing Prior Knowledge - Thursday, January 21** |
| **Essential questions/Goals for the day:** How do we know what our students know? Where did they develop that knowledge? How can we use pre-assessment and children’s questions to assess what they are already bringing to the classroom? How can we as teachers ask better questions? How do we develop objectives based on pre-assessment? |
| **Equity Focus:** How does prior knowledge influence the way students react to new content? |
| **Science Focus:** Moon phases and seasons (content), challenges and benefits of using modeling in the classroom (strategies) |
| **Tasks/In-Class Activities:** |
| ● Analysis of student work or videos (exploratorium) |
| ● Prior Knowledge |
| ● Review curriculum choices and sign up for curriculums to review |
| **Required Readings:** |
Optional Reading:

Assignment 1 work for today:
Share and explore curriculum - Form curriculum groups using the following curriculum choices: FOSS, Engineering is Elementary, CEEI, Amplify (grade 3), Mystery Science, NGSS Storylines, Learning in Places (?), Open Sci Ed

Session 3: Asking Questions About Phenomena - Thursday, January 28

Essential questions/Goals for the day: What is phenomenon based teaching and how do we go about it?
Equity Focus: How does using a phenomenon-based approach help to support all learners? What does sensemaking look like in culturally relevant teaching? How can I support culturally and linguistically diverse students in my science classroom?
Science Focus: Light and sound (content), Modeling (strategies), anchoring phenomenon routine (strategies)

Tasks/In-Class Activities:
- Student reading presentation: Group 1
- Finding and evaluating phenomenon
- Anchoring Phenomenon Routine
- Work in Curriculum Groups to Analyze and Prepare for Presentations week 4

Required Readings:
- One of the following:
 - Jelly, Shelia. “Helping Children Raise Questions and Answering them.”

Additional Resources:
- OpenSciEd Teacher Handbook - The Anchoring Phenomenon Routine (pp. 12-14)

Session 4: Designing Investigations - Thursday, February 4

Essential questions/Goals for the day: How can I support the practice of engaging in data collection practices and conversations? How language and science learning can occur simultaneously?
Equity Focus: Engaging students in scientific discourse around data collection
Science Focus: ramps and momentum (content) and data collection conversations (strategies), navigation routine (strategies)

Tasks/In-Class Activities:
- Student reading presentation: Group 2
- Asynchronous activities: set up ramp labs
- Assignment 1 Curriculum Presentations Due
Required Readings:

Session 5: Collecting & Interpreting Data - Thursday, February 11

Essential questions/Goals for the day: How can I support the practice of engaging in data collection practices and conversations? How language and science learning can occur simultaneously?

Equity Focus: Engaging students in scientific discourse around data collection

Science Focus: ramps and momentum (content) and data collection conversations (strategies)

Tasks/In-Class Activities:
- Student reading presentation: Group 3

Required Readings:

Additional Resource:
- Robertson, W. Stop Faking it: Finally understanding science so you can teach it. *Force and Motion.*

Session 6: Using Models to Explain Phenomena - Thursday, February 18

Essential questions/Goals for the day: How can students use models to explain phenomenon and how can we employ them effectively in our classrooms?

Equity Focus: How prior knowledge may influence the way students react to new content?

Science Focus: Moon phases and seasons (content), challenges and benefits of using modeling in the classroom (strategies)

Tasks/In-Class Activities:
- Student reading presentation: Group 4

Required Readings:

Session 7: Talking Science - Thursday, February 25

Essential questions/Goals for the day: What does academically productive talk look like in science? How can I create a learning environment where students can engage in academically productive talk?

Equity Focus: Ensuring equitable small group discussions

Science Focus: TBA

Tasks/In-Class Activities:
- Student reading presentation: Group 5
- Scientific Practices: Argumentation
- Productive talk moves, setting discussion norms, and equitable small group discussions
- Individual meetings on your final project (set up outside of class)

Required Readings:
- Talk Moves single page
- One of the following:

Additional Resources:
- Talk Science Primer
- Types of Discussion Resource from OpenSciEd

Session 8: Reading and Writing Science - Thursday, March 4

Essential questions/Goals for the day: Why is it important to support and focus on literacy during science?

Equity Focus: Teaching students how to read science texts is equitable science instruction.

Science Focus: Content (TBA), Obtaining, Evaluating and Communicating information (strategies)

Tasks/In-Class Activities:
- Student reading presentation: Group 6
- Difficulties of science texts
- Framework for teaching reading in science

Required Readings:
- Find the common core standards for reading. Look under "Reading Informational Texts" for your grade level. Link to Common Core ELA.

Session 9: Equitable Access - Thursday, March 11

Essential questions/Goals for the day:

Equity Focus: TBA

Science Focus: TBA

Tasks/In-Class Activities:
- Noticing for equity
- Difficulties of science texts
- Framework for teaching reading in science

Required Readings:
- One of the following:
○ Patterson Williams, Alexis, Higgs, JM, Athanases, SZ. Noticing for Equity to Sustain Multilingual Literacies. Journal of Adolescent and Adult Literacy, 63(4), 2020, https://escholarship.org/uc/item/8vm9s55k

Additional Resources:
 ● Equitable Classroom Culture Resource from OpenSciEd
 ● Strategies for Supporting Emerging Multilingual Learners from OpenSciEd

Session 10: Wrapping Up - Thursday, March 18

Essential questions/Goals for the day: What have we learned about scientific literacy (integrating reading, writing, talking, and doing science) and equity? How will you apply what you have learned to your teaching?

Equity Focus: What barriers exist in your classroom for science participation?

Science Focus:

Tasks/In-Class Activities:
 ● Equity Reflection
 ● Concept mapping and applying what we have learned to our teaching
 ● Assignment 2 Presentation of Final Projects Due (sharing lesson plans in groups)

Required Readings:
 ● None